Integrated mRNA and small RNA sequencing reveals post-transcriptional regulation of the sesquiterpene pathway in Santalum album L. (Indian sandalwood)

3 Biotech. 2023 Dec;13(12):387. doi: 10.1007/s13205-023-03816-4. Epub 2023 Nov 6.

Abstract

Key message: In sandalwood, negative pattern of regulation by miRNAs was documented in key genes from the sesquiterpene pathway, with cytochrome P450 reductase showing maximum miRNA targets, followed by sesquisabianene synthase 1.

Abstract: A comprehensive knowledge of the molecular regulation of sesquiterpene biosynthetic pathway through transcriptomic studies is well established in Santalum album (Indian Sandalwood). However, the post-transcriptional regulation of the genes regulating the pathway is still elusive in this genus. In the present study, an integrated analysis of wood transcriptome and small RNA datasets was conducted to investigate the role of miRNAs in regulating the expression of transcripts involved in santalol production mediated by the sesquiterpene biosynthesis pathway. A total of 24,237 transcripts were annotated from the wood transcriptome, and 45 transcripts were mapped to the sesquiterpenoid pathway. Small RNA data analysis identified 257 conserved miRNAs belonging to 50 families and 7 novel putative miRNAs. Sa-miR156, Sa-miR396, Sa-miR166, and Sa-miR319 had the most number of members among the miRNA families. An integrated analysis predicted 69 miRNA members belonging to 12 families that targeted 12 transcripts from the sesquiterpene pathway, with a maximum of 24 miRNAs regulating cytochrome P450 reductase, followed by sesquisabianene synthase 1, which was targeted by 23 miRNAs. Validation of miRNA-mRNA interaction by qRT-PCR revealed a negative pattern of regulation in six miRNA-mRNA target pairs across wood tissues sourced from four genotypes. The present study provides the first crucial insight into the post-transcriptional regulation of the sesquiterpene pathway genes in the genus Santalum and opens up a new perspective in metabolite engineering for enhanced essential oil production in sandalwood.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-023-03816-4.

Keywords: MicroRNA; Regulation; Sandalwood; Santalols; Transcriptome.