Formation of Supramolecular Heterostacks at the Liquid-Solid Interface: Impact of Symmetry Mismatching on Structural Growth

Langmuir. 2023 Nov 28;39(47):16825-16832. doi: 10.1021/acs.langmuir.3c02327. Epub 2023 Nov 15.

Abstract

The construction of intricate three-dimensional (3D) nanoarchitectures on surfaces through molecular self-assembly attracts attention not only from a crystal engineering viewpoint but also because of its potential in a range of applications, given the current interest in van der Waals heterostructures. We herein report the formation of porous structures on alkane buffer layers on graphite. A dehydrobenzo[12]annulene (DBA) derivative having six decyloxy chains forms hexagonal structures on n-pentacontane and n-hexacontane buffer layers through van der Waals interactions at the 1-octanoic acid/graphite interface. The structural features are very similar to those on the graphite surface, except for the slight structural distortion, which is attributed to the p2 symmetry of the buffer layer underneath. Moreover, based on the observation of small clusters of the DBA molecules, we discussed the nucleation and structural growth of the DBA network on a buffer layer. Finally, a hierarchical multicomponent structure was formed through the coadsorption of a heteromolecular cluster formed by a hydrogen-bonded isophthalic acid cyclic hexamer hosting a coronene molecule on the buffer layer. This study on supramolecular heterostacks provides insights into the construction of intricate 3D nanoarchitectures using self-assembly at interfaces.