Microglial roles in Alzheimer's disease: An agent-based model to elucidate microglial spatiotemporal response to beta-amyloid

CPT Pharmacometrics Syst Pharmacol. 2024 Mar;13(3):449-463. doi: 10.1002/psp4.13095. Epub 2024 Feb 1.

Abstract

Alzheimer's disease (AD) is characterized by beta-amyloid (Aβ) plaques in the brain and widespread neuronal damage. Because of the high drug attrition rates in AD, there is increased interest in characterizing neuroimmune responses to Aβ plaques. In response to AD pathology, microglia are innate phagocytotic immune cells that transition into a neuroprotective state and form barriers around plaques. We seek to understand the role of microglia in modifying Aβ dynamics and barrier formation. To quantify the influence of individual microglia behaviors (activation, chemotaxis, phagocytosis, and proliferation) on plaque size and barrier coverage, we developed an agent-based model to characterize the spatiotemporal interactions between microglia and Aβ. Our model qualitatively reproduces mouse data trends where the fraction of microglia coverage decreases as plaques become larger. In our model, the time to microglial arrival at the plaque boundary is significantly negatively correlated (p < 0.0001) with plaque size, indicating the importance of the time to microglial activation for regulating plaque size. In addition, in silico behavioral knockout simulations show that phagocytosis knockouts have the strongest impact on plaque size, but modest impacts on microglial coverage and activation. In contrast, the chemotaxis knockouts had a strong impact on microglial coverage with a more modest impact on plaque volume and microglial activation. These simulations suggest that phagocytosis, chemotaxis, and replication of activated microglia have complex impacts on plaque volume and coverage, whereas microglial activation remains fairly robust to perturbations of these functions. Thus, our work provides insights into the potential and limitations of targeting microglial activation as a pharmacological strategy for the treatment of AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / drug therapy
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Brain / metabolism
  • Mice
  • Mice, Transgenic
  • Microglia / metabolism
  • Microglia / pathology
  • Plaque, Amyloid

Substances

  • Amyloid beta-Peptides