Impaired Discrimination of Electrocutaneous Stimulation in the Paretic Hand of Stroke Survivors

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-6. doi: 10.1109/EMBC40787.2023.10340295.

Abstract

Artificial sensory feedback via electrocutaneous stimulation can be used to assist or rehabilitate stroke survivors with sensory deficits. Conveying the magnitude of tactile stimuli is an important aspect of artificial sensory feedback. Here, we explore how stroke-related sensory deficits impact the ability of electrocutaneous stimulation to convey the magnitude of tactile stimuli. Using classical psychophysical methods, we quantified the threshold of detection and the just-noticeable difference of electrocutaneous stimulation current in five stroke survivors with unilateral sensory deficits. We show significantly greater (40%) stimulation currents are needed for initial perception on the paretic hand compared to the non-paretic hand. We also show significantly greater percent changes in stimulation current (140%) are needed for reliable incremental perception on the paretic hand compared to the non-paretic hand. Lastly, we show little correlation between electrocutaneous discrimination performance and clinical sensory assessments of light-touch and spatial mechanoperception. These findings can help guide the implementation of artificial sensory feedback as an assistive or rehabilitative intervention for individuals experiencing sensory loss after a stroke.Clinical Relevance- Our results can help guide the implementation of electrical stimulation as an assistive or rehabilitative intervention for individuals with sensory loss after stroke.

MeSH terms

  • Electric Stimulation Therapy*
  • Hand
  • Humans
  • Stroke Rehabilitation*
  • Stroke* / complications
  • Touch / physiology