More enhanced non-growing season methane exchanges under warming on the Qinghai-Tibetan Plateau

Sci Total Environ. 2024 Mar 20:917:170438. doi: 10.1016/j.scitotenv.2024.170438. Epub 2024 Jan 28.

Abstract

Uncertainty in methane (CH4) exchanges across wetlands and grasslands in the Qinghai-Tibetan Plateau (QTP) is projected to increase due to continuous permafrost degradation and asymmetrical seasonal warming. Temperature plays a vital role in regulating CH4 exchange, yet the seasonal patterns of temperature dependencies for CH4 fluxes over the wetlands and grasslands on the QTP remain poorly understood. Here, we demonstrated a stronger warming response of CH4 exchanges during the non-growing season compared to the growing season on the QTP. Analyzing 9745 daily observations and employing four methods -regression fitting of temperature-CH4 flux, temperature dependence calculations, field-based and model-based control experiments-we found that warming intensified CH4 emissions in wetlands and uptakes in grasslands. Specifically, the average reaction intensity in the non-growing season surpasses that in the growing season by 1.89 and 4.80 times, respectively. This stronger warming response of CH4 exchanges during the non-growing season significantly increases the regional CH4 exchange on the QTP. Our research reveals that CH4 exchanges in the QTP have a higher warming sensitivity in non-growing seasons, which meanwhile are dominated by a larger warming rate than the annual average. The combined effects of these two factors will significantly alter the CH4 source/sink on the QTP. Neglecting these impacts would lead to inaccurate estimations of CH4 source/sink over the QTP under climate warming.

Keywords: Data integration; Machine learning; Methane exchange; Seasonality; Temperature sensitivity; The Qinghai-Tibetan Plateau.