Polarity-Mediated Antisolvent Control Enables Efficient Lanthanide-Based near-Infrared Perovskite LEDs

Nano Lett. 2024 Mar 6;24(9):2765-2772. doi: 10.1021/acs.nanolett.3c04586. Epub 2024 Feb 23.

Abstract

Alloying lanthanide ions (Yb3+) into perovskite quantum dots (Yb3+:CsPb(Cl1-xBrx)3) is an effective method to achieve efficient near-infrared (NIR) luminescence (>950 nm). Increasing the Yb3+ alloying ratio in the perovskite matrix enhances the luminescence intensity of Yb3+ emission at 990 nm. However, high Yb3+ alloying (>15%) results in vacancy-induced inferior material stability. In this work, we developed a polarity-mediated antisolvent manipulation strategy to resolve the incompatibility between a high Yb3+ alloying ratio and inferior stability of Yb3+:CsPb(Cl1-xBrx)3. Precise control of solution polarity enables increased uniformity of the perovskite matrix with fewer trap densities. Employing this strategy, we obtain Yb3+:CsPb(Cl1-xBrx)3 with the highest Yb3+ alloying ratio of 30.2% and a 2-fold higher electroluminescence intensity at 990 nm. We lever the engineered Yb3+:CsPb(Cl1-xBrx)3 to fabricate NIR-LEDs, achieving a peak external quantum efficiency (EQE) of 8.5% at 990 nm: this represents the highest among perovskite NIR-LEDs with an emission wavelength above 950 nm.

Keywords: lanthanide ions; light-emitting diodes; near-infrared; perovskite; quantum dots.