Impaired drainage through capillary-venous networks contributes to age-related white matter loss

bioRxiv [Preprint]. 2024 Feb 12:2024.02.11.579849. doi: 10.1101/2024.02.11.579849.

Abstract

The gradual loss of cerebral white matter contributes to cognitive decline during aging. However, microvascular networks that support the metabolic demands of white matter remain poorly defined. We used in vivo deep multi-photon imaging to characterize microvascular networks that perfuse cortical layer 6 and corpus callosum, a highly studied region of white matter in the mouse brain. We show that these deep tissues are exclusively drained by sparse and wide-reaching venules, termed principal cortical venules, which mirror vascular architecture at the human cortical-U fiber interface. During aging, capillary networks draining into deep branches of principal cortical venules are selectively constricted, reduced in density, and diminished in pericyte numbers. This causes hypo-perfusion in deep tissues, and correlates with gliosis and demyelination, whereas superficial tissues become relatively hyper-perfused. Thus, age-related impairment of capillary-venular drainage is a key vascular deficit that contributes to the unique vulnerability of cerebral white matter during brain aging.

Publication types

  • Preprint