Hydrogen-Deuterium Exchange Mass Spectrometry Identifies Local and Long-Distance Interactions within the Multicomponent Radical SAM Enzyme, PqqE

ACS Cent Sci. 2024 Jan 17;10(2):251-263. doi: 10.1021/acscentsci.3c01023. eCollection 2024 Feb 28.

Abstract

Interactions among proteins and peptides are essential for many biological activities including the tailoring of peptide substrates to produce natural products. The first step in the production of the bacterial redox cofactor pyrroloquinoline quinone (PQQ) from its peptide precursor is catalyzed by a radical SAM (rSAM) enzyme, PqqE. We describe the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to characterize the structure and conformational dynamics in the protein-protein and protein-peptide complexes necessary for PqqE function. HDX-MS-identified hotspots can be discerned in binary and ternary complex structures composed of the peptide PqqA, the peptide-binding chaperone PqqD, and PqqE. Structural conclusions are supported by size-exclusion chromatography coupled to small-angle X-ray scattering (SEC-SAXS). HDX-MS further identifies reciprocal changes upon the binding of substrate peptide and S-adenosylmethionine (SAM) to the PqqE/PqqD complex: long-range conformational alterations have been detected upon the formation of a quaternary complex composed of PqqA/PqqD/PqqE and SAM, spanning nearly 40 Å, from the PqqA binding site in PqqD to the PqqE active site Fe4S4. Interactions among the various regions are concluded to arise from both direct contact and distal communication. The described experimental approach can be readily applied to the investigation of protein conformational communication among a large family of peptide-modifying rSAM enzymes.