Impact of Processing Methods on the Distribution of Mineral Elements in Goat Milk Fractions

J Dairy Sci. 2024 Mar 13:S0022-0302(24)00575-7. doi: 10.3168/jds.2024-24520. Online ahead of print.

Abstract

Milk and dairy products are excellent sources of mineral elements, including Ca, P, Mg, Na, K and Zn. The purpose of this study was to determine the effect of non-thermal (homogenization) and thermal (heat treatment) treatments on the distribution of mineral elements in 4 milk fractions: fat, casein, whey protein, and aqueous phase. The study results revealed that the distribution of mineral elements (such as Mg and Fe) in fat fractions is extremely low, while significant mineral elements such as Ca, Zn, Fe, and Cu are mostly dispersed in casein fractions. For non-treated goat milk, Mo is the only element identified in the whey protein fraction, while K and Na are mostly found in the aqueous phase. Mineral element concentrations in fat (K, Zn, etc.) and casein fraction (Fe, Mo, etc.) increased dramatically after homogenization. Homogenization greatly decreased the concentration of mineral elements in the whey protein fraction (Ca, Na, etc.) and aqueous phase (Fe, Cu, etc.). After heat treatment, the element content in the fat fraction and casein fraction increased greatly when compared with raw milk, such as Cu and Mg in the fat fraction, Na and Cu in the whey protein fraction, the concentration of components such as Mg and Na in casein fraction increased considerably. On the other hand, after homogenization, Zn in the aqueous phase decreased substantially, whereas Fe increased significantly. Therefore, both homogenization and heat treatment have an effect on the mineral element distribution in goat milk fractions.

Keywords: element distribution; goat milk; heat treatment; homogenization.