[Effect of single basal application of controlled-release blended fertilizer on reactive nitrogen loss, carbon and nitrogen footprint during summer maize growth period]

Ying Yong Sheng Tai Xue Bao. 2023 Dec;34(12):3322-3332. doi: 10.13287/j.1001-9332.202312.012.
[Article in Chinese]

Abstract

To elucidate the agronomic and environmental effects of single basal application of controlled-release blended fertilizer in summer maize, and optimize management measures of nitrogen fertilizer for grain production in North China Plain, we conducted a field experiment in Dezhou Modern Agricultural Science and Technology Park in Shandong Province. There were four treatments: CK (no N fertilizer), FFP (farmer's fertilizing practice, 240 kg N·hm-2), OPT (optimized nitrogen application, 210 kg N·hm-2), and CRBF (controlled-release blended fertilizer with single basal application, 210 kg N·hm-2). We compared maize yield and reactive nitrogen loss, and quantitatively evaluated the carbon and nitrogen footprints by using life cycle assessment method. The results showed that nitrogen application significantly increased summer maize yield. Compared with FFP, OPT and CRBF increased summer corn yield by 0.7% and 2.9%, respectively, decreased the total amount of ammonia volatilization, N2O emission, and nitrate leaching by 13.0% and 72.7%, 13.3% and 37.5%, 20.5% and 23.5% respectively. Compared with CK, nitrogen application significantly increased the global warming potential (GWP) of summer maize production. Compared with FFP, GWP and greenhouse gas emission intensity of OPT decreased by 3.8% and 4.2%, while the reduction of CRBF were 8.7% and 12.0%, respectively. Compared with CK, nitrogen application significantly increased the carbon and nitrogen footprint of summer maize production. The production and transportation of nitrogen fertilizer and soil greenhouse gas emission were the main contributing factors of the carbon footprint, with contribution rates of 54%-60% and 24%-31%, respectively. Nitrate leaching was the main contributing factor of nitrogen footprint, with contribution rate of 57%-94%. Compared with FFP, the carbon and nitrogen footprints of OPT and CRBF were reduced by 11.0% and 16.5%, 19.6% and 28.4%, respectively. Considering the yield, reactive nitrogen loss and carbon and nitrogen footprint, we recommended the single basal application of controlled-release blended fertilizer as an effective nitrogen fertilizer management measure to promote grain clean production in the North China Plain.

为探究控释掺混肥减量一次性基施在夏玉米上的农学和环境效应,优化我国华北地区粮食生产的氮肥管理措施,在山东省德州市现代农业科技园区开展田间试验,设不施氮对照(CK)、常规施氮(施氮量240 kg·hm-2,FFP)、优化施氮(施氮量210 kg·hm-2,OPT)和控释掺混肥一次性基施(施氮量210 kg·hm-2,CRBF)4个处理,对比分析了不同处理的夏玉米产量和活性氮损失(氨挥发、N2O排放、硝酸盐淋溶)差异,并采用生命周期评价法,定量评估了不同处理的碳、氮足迹。结果表明: 与CK相比,施氮显著增加了夏玉米产量;与FFP相比,OPT和CRBF处理的夏玉米产量分别提高0.7%和2.9%,氨挥发、N2O排放、硝酸盐淋溶总量分别显著降低13.0%和72.7%、13.3%和37.5%、20.5%和23.5%。与CK相比,施氮显著增加了夏玉米生产的全球增温潜势(GWP);与FFP相比,OPT处理的GWP和温室气体排放强度分别降低3.8%和4.2%,CRBF处理分别显著降低8.7%和12.0%。施氮较CK显著增加了夏玉米生产的碳、氮足迹,氮肥的生产运输和土壤温室气体排放是碳足迹的主要贡献因子,贡献率分别为54%~60%和24%~31%;硝酸盐淋溶是氮足迹的主要贡献因子,贡献率高达57%~94%;与FFP相比,OPT和CRBF处理的碳、氮足迹分别显著降低11.0%和16.5%、19.6%和28.4%。综合考虑作物产量、活性氮损失和碳氮足迹,一次性减量基施控释掺混肥能够发挥更大的环境效益,可推荐为促进华北平原粮食清洁生产的有效氮肥管理措施。.

Keywords: ammonia volatilization; carbon and nitrogen footprint; controlled-release blended fertilizer; greenhouse gas emissions; life cycle assessment; nitrate leaching.

Publication types

  • English Abstract

MeSH terms

  • Agriculture / methods
  • Carbon
  • Carbon Footprint
  • China
  • Delayed-Action Preparations
  • Edible Grain / chemistry
  • Fertilizers
  • Greenhouse Gases*
  • Nitrates
  • Nitrogen* / analysis
  • Nitrous Oxide / analysis
  • Soil
  • Zea mays

Substances

  • Nitrogen
  • Fertilizers
  • Greenhouse Gases
  • Delayed-Action Preparations
  • Carbon
  • Nitrates
  • Soil
  • Nitrous Oxide