Effectiveness of the Spot tm Vision Screener With Variations in Ocular Pigments

Am J Ophthalmol. 2024 Apr 4:264:99-103. doi: 10.1016/j.ajo.2024.03.018. Online ahead of print.

Abstract

Purpose: To evaluate Spot in detecting American Association for Pediatric Ophthalmology and Strabismus (AAPOS) Amblyopia risk factors (ARF) and for ARF myopia and hyperopia with variations in ocular pigments.

Design: Diagnostic screening test evaluation.

Methods: Study population: Children presented for a complete eye examination in pediatric clinic. The study population included 1040 participants, of whom 273 had darkly pigmented eyes, 303 were medium pigmented, and 464 were light pigmented.

Intervention: Children were screened with the Spot vision screener before the complete eye examination. A pediatric ophthalmologist then completed an eye examination, including cycloplegic refraction. The pediatric ophthalmologist was blinded to the result of the Spot vision screener.

Main outcome: The association between Spot screening recommendation and meeting one or more ARF/ARF + Amblyopia criterion, Spot measured spherical equivalent, and ARF myopia and hyperopia detection.

Results: The area under the receiver operative characteristic curve (AUC) for myopia was excellent for all. The AUC for hyperopia was good (darker-pigmented: 0.92, medium-pigmented: 0.81, and lighter-pigmented: 0.86 eyes). The Spot was most sensitive for ARF myopia (lighter-pigmented: 0.78, medium-pigmented: 0.52, darker-pigmented: 0.49). The reverse was found for hyperopia; however, sensitivity was relatively poor. The Spot was found most sensitive for hyperopia in the darker-pigment group (0.46), 0.27 for medium-pigment, and 0.23 for the lighter-pigment cohort.

Conclusions: While the Spot was confirmed as a sensitive screening test with good specificity in our large cohort, the sensitivity of the Spot in detecting AAPOS guidelines for myopia and hyperopia differed with variations in skin pigment. Our results support the consideration of ethnic and racial diversity in future advances in photorefractor technology.