The ion-gas-neutral interactions with surfaces-2 (IGNIS-2) facility for the study of plasma-material interactions

Rev Sci Instrum. 2024 Apr 1;95(4):043508. doi: 10.1063/5.0165857.

Abstract

The Ion-Gas-Neutral Interactions with Surfaces-2 (IGNIS-2) surface science facility has been designed at the Pennsylvania State University with the specific purpose of enabling experiments to study plasma-material interactions. This in situ surface modification and characterization facility consists of multiple reconfigurable substations that are connected through a central transfer chamber. This fully connected vacuum system ensures that the physical and chemical properties of samples are not altered between surface modification and analysis. The modification techniques in IGNIS-2 include a low-energy (<300 eV), high-flux (up to 1016 cm-2 s-1) broad-beam ion source, a liquid metal dropper, a lithium injection system, an RF sputter source, and an evaporator. Its characterization techniques include charged particle-based techniques, such as low-energy ion scattering (enabled by two <5 keV ion sources) and x-ray photoelectron spectroscopy, and photon and light-based techniques, such as x-ray fluorescence, multi-beam optical stress sensors, and optical cameras. All of these techniques can be utilized up to mTorr pressures, allowing both in situ and in operando studies to be conducted. Results are presented on lithium wetting experiments of argon-irradiated tungsten-based composites, surface stress measurements of tungsten films during deuterium ion irradiation, and temperature-programmed desorption of deuterium-irradiated graphite to demonstrate the in situ capabilities of this new facility.