Misidentification and misreporting of antibiotic resistance in Kluyvera bacteremia by blood culture molecular identification panels

Microbiol Spectr. 2024 Apr 23:e0054224. doi: 10.1128/spectrum.00542-24. Online ahead of print.

Abstract

The use of molecular identification panels has advanced the diagnosis for blood stream infections with fast turnaround time and high accuracy. Yet, this technology cannot completely replace conventional blood culture and standardized antibiotic susceptibility testing (AST) given its limitations and occasional false results. Here we present two cases of bacteremia caused by Kluyvera. Its identification and antibiotic resistance were at least partially mispresented by blood culture molecular identification panels on ePlex, Verigene, and Biofire. The detection of CTX-M resistance marker did not align with the susceptibility to the third generation cephalosporins among a wide range of antibiotics for this organism. Conventional extended-spectrum beta-lactamase (ESBL) testing was used to confirm the absence of ESBL. Caution should be taken when managing cases with CTX-M or ESBL detection in blood culture caused by uncommon pathogens. Conventional culture with microbial identification and standardized AST should continue to be the gold standard for routine patient care.

Importance: This is the first report that highlights the limitations of blood culture molecular identification panels on identifying Kluyvera and its associated antibiotic resistance patterns. Both the false identification and overreporting of antibiotic resistance could mislead the treatment for bacteremia caused by this pathogen. Patient isolation could have been avoided due to the lack of extended-spectrum beta-lactamase (ESBL) activity of the organism. This report emphasizes the importance of confirming rapid identification and antibiotic resistance by molecular technologies with standardized methods. It also provides insight into the development of new diagnostic panels.

Keywords: MALDI-TOF MS; PCR; antimicrobial resistance; multiplex; rapid diagnostics; sepsis; syndromic.