Enhanced humification of full-scale apple wood and cow manure by promoting lignocellulose degradation via biomass pretreatments

Sci Total Environ. 2024 Jun 15:929:172646. doi: 10.1016/j.scitotenv.2024.172646. Epub 2024 Apr 21.

Abstract

Agroforestry waste and cow manure pollute the environment, of which, agroforestry waste is difficult to degrade. Compost is an effective way to dispose agroforestry waste; however, the low degradation efficiency of lignocellulose in agroforestry waste affects the process of composting humification. This study investigated lignocellulose degradation and composting humification in full-size apple wood and cow manure composting processes by applying different pretreatments (acidic, alkaline, and high-temperature) to apple wood. Simultaneously, physicochemical characterization and metagenome sequencing were combined to analyze the function of carbohydrate-active enzymes database (CAZy). Therefore, microbial communities and functions were linked during the composting process and the lignocellulose degradation mechanism was elaborated. The results showed that the addition of apple wood increased the compost humus (HS) yield, and pretreatment of apple wood enhanced the lignocellulose degradation during composting processes. In addition, pretreatment improved the physicochemical properties, such as temperature, pH, electric conductivity (EC), ammonium nitrogen (NH4+), and nitrate nitrogen (NO3-) in the compost, of which, acid treated apple wood compost (AcAWC) achieved the highest temperature of 58.4 °C, effectively promoting nitrification with NO3- ultimately reaching 0.127 g/kg. In all composts, microbial networks constructed a high proportion of positively correlated connections, and microorganisms promoted the composting process through cooperation. The proportions of glycosyltransferase (GT) and glycoside hydrolase (GH) promoted the separation and degradation of lignocellulose during composting to form HS. Notably, the adverse effects of the alkali-treated apple wood compost on bacteria were greater. AcAWC showed significant correlations between bacterial and fungal communities and both lignin and hemicellulose, and had more biomarkers associated with lignocellulose degradation and humification. The lignin degradation rate was 24.57 % and the HS yield increased by 27.49 %. Therefore, AcAWC has been confirmed to enhance lignocellulose degradation and promote compost humification by altering the properties of the apple wood and establishing a richer microbial community.

Keywords: CAZy; Composting; Humification; Lignocellulose; Metagenome.

MeSH terms

  • Animals
  • Biodegradation, Environmental
  • Biomass
  • Cattle
  • Composting*
  • Humic Substances
  • Lignin* / metabolism
  • Malus*
  • Manure*
  • Wood*

Substances

  • Lignin
  • lignocellulose
  • Manure
  • Humic Substances