Exploring the Micropore Functional Mechanism of N2O Adsorption by the Eucalyptus Bark-based Porous Carbon

Langmuir. 2024 May 14;40(19):10393-10404. doi: 10.1021/acs.langmuir.4c00701. Epub 2024 Apr 26.

Abstract

Nitrous oxide (N2O), recognized as a significant greenhouse gas, has received insufficient research attention in the past. In view of their low energy consumption and cost-effectiveness, the application of porous materials in adsorption is increasingly regarded as a potent strategy to reduce N2O pollution. In this study, a series of microporous porous carbons with a preeminent specific surface area (244.54-2018.08 m2 g-1), which are derived from the fast-growing eucalyptus bark, were synthesized by KOH activation at high temperatures. The obtained materials demonstrated a relatively fine N2O capture capability (0.19-0.68 mmol g-1) at normal temperature and pressure. More importantly, the optimal pore size affecting N2O adsorption (0.8 and 1.0 nm) has been detected, which is a meaningful view that has never been put forward in previous studies. The rationality of the N2O adsorption mechanism was also validated by combining the experimental analysis and Grand Canonical Monte Carlo (GCMC) simulation. The calculated results showed that 0.8 and 1.0 nm of the porous carbon were the preferred pore sizes for N2O adsorption, and the interaction force between N2O and the pore wall decreased with the increase of distance. This study provides a significant theoretical basis for the preparation of biomass porous carbon with excellent N2O adsorption performance and practical adsorption application.