Construction of Hierarchical Porous UiO-66-Br2@PS/DVB-Packed Columns by High Internal Phase Emulsion Strategy for Enhanced Separation of CF4/N2 and SF6/N2

ACS Appl Mater Interfaces. 2024 Apr 26. doi: 10.1021/acsami.4c02098. Online ahead of print.

Abstract

Recovery and separation of anthropogenic emissions of electronic specialty gases (F-gases, such as CF4 and SF6) from the semiconductor sector are of critical importance. In this work, the hierarchical porous UiO-66-Br2@PS/DVB-packed column was constructed by a high internal phase emulsions strategy. UiO-66-Br2@PS/DVB exhibits a superior selectivity of CF4/N2 (2.67) and SF6/N2 (3.34) predicted by the IAST due to the diffusion limitation in the micropore and the gas-framework affinity. Especially, UiO-66-Br2@PS/DVB showed significant CF4 and SF6 retention and enabled the successful separation of CF4/N2 and SF6/N2 with a resolution of 2.37 and 8.89, respectively, when used as a packed column in gas chromatography. Compared with the Porapak Q column, the HETP of the UiO-66-Br2@PS/DVB-packed column decreased and showed good reproducibility. This research not only offers a convenient method for fabricating a hierarchical porous MOF-packed column but also showcases the prospective utilization of MOFs for the separation of the F-gas/N2 mixture.

Keywords: F-gases capture; adsorptive separation; gas chromatography; metal−organic framework; stationary phase.