Identifying the geospatial relationship of surface ozone pollution in China: Implications for key pollution control regions

Sci Total Environ. 2024 Apr 24:930:172763. doi: 10.1016/j.scitotenv.2024.172763. Online ahead of print.

Abstract

Surface ozone pollution, as a pressing environmental concern, has garnered widespread attention across China. Due to air mass transport, effective control of ozone pollution is highly dependent on collaborative efforts across neighboring regions. However, specific regions with strong internal interactions of ozone pollution are not yet well identified. Here, we introduced the Geospatial SHapley Additive exPlanation (GeoSHAP) approach, which primarily involves machine learning and geostatistical algorithms. Based on extensive atmospheric environmental monitoring data from 2017 to 2021, machine learning models were employed to train and predict ozone concentrations at the target location. The R2 values on the test sets of different scale regions all reached 0.98 in the overall condition, indicating that the core model has good accuracy and generalization ability. The results highlight key regions with high ozone geospatial relationship (OGR) index, predominantly located in the Northern District (ND), spanning the Fen-Wei Plain, the Loess Plateau, and the North China Plain, as well as within portions of the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). Further investigation indicated that high geospatial relationships stem from a synergy between anthropogenic and natural factors, with anthropogenic factors serving as a pivotal element. This study revealed key regions with the most urgent need for joint control of anthropogenic sources to mitigate ozone pollution.

Keywords: Anthropogenic sources; GeoSHAP; Key regions; OGR index; Regional ozone pollution.