A Systematic Study of the Factors Affecting the Surface Quality of Chemically Vapor-Deposited Diamond during Chemical and Mechanical Polishing

Micromachines (Basel). 2024 Mar 28;15(4):459. doi: 10.3390/mi15040459.

Abstract

Diamond surfaces must be of high quality for potential use in semiconductors, optical windows, and heat conductivity applications. However, due to the material's exceptional hardness and chemical stability, it can be difficult to obtain a smooth surface on diamond. This study examines the parameters that can potentially influence the surface quality of chemically vapor-deposited (CVD) diamonds during the chemical and mechanical polishing (CMP) process. Analysis and experimental findings show that the surface quality of polished CVD diamonds is significantly influenced by the crystal structure and the growth quality of the diamond. In particular, when the surface roughness is below Ra 20 nm, the pores and grain boundaries on CVD diamond obstruct surface roughness reduction during mechanical polishing. To obtain a smooth polished surface, careful consideration of the size of diamond abrasives and polishing methods is also a prerequisite. Chemical mechanical polishing is a novel method to achieve a surface quality with roughness below Ra 3 nm, as in this method, the anisotropy of the CVD diamond allows the uneven steps to be efficiently erased. However, the chemical actions of polishing slurry should be controlled to prevent the formation of chemical etching pits.

Keywords: chemical mechanical polishing; diamond; mechanical polishing; surface quality.