Eight In. Wafer-Scale Epitaxial Monolayer MoS2

Adv Mater. 2024 Apr 29:e2402855. doi: 10.1002/adma.202402855. Online ahead of print.

Abstract

Large-scale, high-quality, and uniform monolayer molybdenum disulfide (MoS2) films are crucial for their applications in next-generation electronics and optoelectronics. Epitaxy is a mainstream technique for achieving high-quality MoS2 films and is demonstrated at a wafer scale up to 4-in. In this study, the epitaxial growth of 8-in. wafer-scale highly oriented monolayer MoS2 on sapphire is reported as with excellent spatial homogeneity, using a specially designed vertical chemical vapor deposition (VCVD) system. Field effect transistors (FETs) based on the as-grown 8-in. wafer-scale monolayer MoS2 film are fabricated and exhibit high performances, with an average mobility and an on/off ratio of 53.5 cm2 V-1 s-1 and 107, respectively. In addition, batch fabrication of logic devices and 11-stage ring oscillators are also demonstrated, showcasing excellent electrical functions. This work may pave the way of MoS2 in practical industry-scale applications.

Keywords: 2D semiconductor; chemical vapor deposition; epitaxial growth; monolayer MoS2; wafer scale.