Orphan receptor GPR176 in hepatic stellate cells exerts a profibrotic role in chronic liver disease

JHEP Rep. 2024 Feb 8;6(5):101036. doi: 10.1016/j.jhepr.2024.101036. eCollection 2024 May.

Abstract

Background & aims: Chronic liver disease (CLD) remains a global health issue associated with a significant disease burden. Liver fibrosis, a hallmark of CLD, is characterised by the activation of hepatic stellate cells (HSCs) that gain profibrotic characteristics including increased production of extracellular matrix protein. Currently, no antifibrotic therapies are available clinically, in part because of the lack of HSC-specific drug targets. Here, we aimed to identify HSC-specific membrane proteins that can serve as targets for antifibrotic drug development.

Methods: Small interfering RNA-mediated knockdown of GPR176 was used to assess the in vitro function of GPR176 in HSCs and in precision cut liver slices (PCLS). The in vivo role of GPR176 was assessed using the carbon tetrachloride (CCl4) and common bile duct ligation (BDL) models in wild-type and GPR176 knockout mice. GPR176 in human CLD was assessed by immunohistochemistry of diseased human livers and RNA expression analysis in human primary HSCs and transcriptomic data sets.

Results: We identified Gpr176, an orphan G-protein coupled receptor, as an HSC-enriched activation associated gene. In vitro, Gpr176 is strongly induced upon culture-induced and hepatocyte-damage-induced activation of primary HSCs. Knockdown of GPR176 in primary mouse HSCs or PCLS cultures resulted in reduced fibrogenic characteristics. Absence of GPR176 did not influence liver homeostasis, but Gpr176-/- mice developed less severe fibrosis in CCl4 and BDL fibrosis models. In humans, GPR176 expression was correlated with in vitro HSC activation and with fibrosis stage in patients with CLD.

Conclusions: GPR176 is a functional protein during liver fibrosis and reducing its activity attenuates fibrogenesis. These results highlight the potential of GPR176 as an HSC-specific antifibrotic candidate to treat CLD.

Impact and implications: The lack of effective antifibrotic drugs is partly attributed to the insufficient knowledge about the mechanisms involved in the development of liver fibrosis. We demonstrate that the G-protein coupled receptor GPR176 contributes to fibrosis development. Since GPR176 is specifically expressed on the membrane of activated hepatic stellate cells and is linked with fibrosis progression in humans, it opens new avenues for the development of targeted interventions.

Keywords: Fibrosis; G-protein-coupled receptors; GPR176; Liver cirrhosis; Myofibroblasts.