4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease

Cell Rep. 2024 Apr 26:114148. doi: 10.1016/j.celrep.2024.114148. Online ahead of print.

Abstract

Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.

Keywords: 4-hydroxybenzoic acid; CP: Metabolism; CoQ biosynthesis; cardiac insufficiency; coenzyme Q deficiency; metabolic disorders; mitochondrial diseases; neurodevelopmental disorders; perinatal lethality; pharmacological therapy; translational medicine.