Unraveling Exciton-Plasmon Coupling and the PIRET Mechanism in Decorated Silicon Nanowires

J Phys Chem Lett. 2024 May 16;15(19):5171-5176. doi: 10.1021/acs.jpclett.4c01010. Epub 2024 May 7.

Abstract

Exciton-plasmon coupling is a fascinating physical phenomenon that has been investigated in various metal semiconductor systems. Intentionally chosen silicon nanowires (SiNWs) systems act as a host material for providing exciton as well as silicon oxide as a thin dielectric. A clear blue-shift in photoluminescence (PL) peak and a significant increase in visible range absorption were observed for metal nanoparticle (MNP) decorated SiNWs (D-SiNWs) which signifies the presence of exciton-plasmon coupling. A further investigation reveals that the possibility of the occurrence of the plasmon-induced resonance energy transfer (PIRET) mechanism is higher. The PL intensity enhancement in Au-decorated SiNWs is higher (∼38 times) in comparison to that in Pt due to the presence of a strong and localized electric field of plasmons near the interface of metal and semiconductors. Moreover, splitting in PL for gold-decorated SiNWs might be due to the presence of dipole-quadrupole coupling along with dipole-dipole coupling, which further increases the strength of the PIRET mechanism.