Comparison of Different Fusion Radiomics for Predicting Benign and Malignant Sacral Tumors: A Pilot Study

J Imaging Inform Med. 2024 May 8. doi: 10.1007/s10278-024-01134-6. Online ahead of print.

Abstract

Differentiating between benign and malignant sacral tumors is crucial for determining appropriate treatment options. This study aims to develop two benchmark fusion models and a deep learning radiomic nomogram (DLRN) capable of distinguishing between benign and malignant sacral tumors using multiple imaging modalities. We reviewed axial T2-weighted imaging (T2WI) and non-contrast computed tomography (NCCT) of 134 patients pathologically confirmed as sacral tumors. The two benchmark fusion models were developed using fusion deep learning (DL) features and fusion classical machine learning (CML) features from multiple imaging modalities, employing logistic regression, K-nearest neighbor classification, and extremely randomized trees. The two benchmark models exhibiting the most robust predictive performance were merged with clinical data to formulate the DLRN. Performance assessment involved computing the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV), and positive predictive value (PPV). The DL benchmark fusion model demonstrated superior performance compared to the CML fusion model. The DLRN, identified as the optimal model, exhibited the highest predictive performance, achieving an accuracy of 0.889 and an AUC of 0.961 in the test sets. Calibration curves were utilized to evaluate the predictive capability of the models, and decision curve analysis (DCA) was conducted to assess the clinical net benefit of the DLR model. The DLRN could serve as a practical predictive tool, capable of distinguishing between benign and malignant sacral tumors, offering valuable information for risk counseling, and aiding in clinical treatment decisions.

Keywords: Deep learning; Multimodality imaging; Nomogram; Radiomics; Sacral tumors.