A workflow to practically apply true dose considerations to in vitro testing for next generation risk assessment

Toxicology. 2024 May 7:505:153826. doi: 10.1016/j.tox.2024.153826. Online ahead of print.

Abstract

With the move away from safety testing assessment based on data generated in experimental animals the concept of Next Generation Risk Assessment (NGRA) has arisen which instead uses data from in silico and in vitro models. A key uncertainty in risk assessment is the actual dose of test chemical at the target site, and therefore surrogate dose metrics, such as nominal concentration in test media are used to describe in vitro effect (or no-effect) doses. The reliability and accuracy of the risk assessment therefore depends largely on our ability to understand and characterise the relationship between the dose metrics used and the actual biologically effective dose at the target site. The objective of this publication is to use 40 case study chemicals to illustrate how in vitro dose considerations can be applied to characterise the "true dose" and build confidence in the understanding of the biologically effective dose in in vitro test systems for the determination e.g. points of departure (PoDs) for NGRA. We propose a workflow that can be applied to assess whether the nominal test concentration can be considered a conservative dose metric for use in NGRA. The workflow examines the implications of volatility, stability, hydrophobicity, binding to plastic and serum, solubility, and the potential use of in silico models for some of these parameters. For the majority of the case study chemicals we found that the use of nominal concentrations in risk assessment would result in conservative decision making. However, for serval chemicals a potential for underestimation of the risk in humans in vivo based on in vitro nominal effect concentrations was identified, and approaches for refinement by characterisation of the actual effect concentration are proposed.

Keywords: Exposure assessment; In silico; New Approach Methodology (NAM) In vitro; Next Generation Risk Assessment (NGRA); Regulatory acceptance; Risk assessment.