Plausible role of INPP4A dysregulation in idiopathic pulmonary fibrosis

Physiol Rep. 2024 May;12(9):e16032. doi: 10.14814/phy2.16032.

Abstract

INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.

Keywords: INPP4A; bleomycin; disease heterogeneity; idiopathic pulmonary fibrosis; transforming growth factor‐β.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Female
  • Fibroblasts / metabolism
  • Humans
  • Idiopathic Pulmonary Fibrosis* / genetics
  • Idiopathic Pulmonary Fibrosis* / metabolism
  • Idiopathic Pulmonary Fibrosis* / pathology
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Phosphoric Monoester Hydrolases* / genetics
  • Phosphoric Monoester Hydrolases* / metabolism

Substances

  • phosphatidylinositol-3,4-bisphosphate 4-phosphatase
  • Phosphoric Monoester Hydrolases