Co-delivery of paclitaxel and curcumin loaded solid lipid nanoparticles for improved targeting of lung cancer: In vitro and in vivo investigation

Heliyon. 2024 Apr 26;10(9):e30290. doi: 10.1016/j.heliyon.2024.e30290. eCollection 2024 May 15.

Abstract

The objective of this study was to develop nanotechnology-mediated paclitaxel (PAC) and curcumin (CUR) co-loaded solid lipid nanoparticles (PAC-CUR-SLNs) for the treatment of lung cancer, which is a leading cause of death worldwide. Around 85 % cases of lungs cancer constitute non-small cell lung cancer (NSCLC). PAC-CUR-SLNs were prepared via high pressure homogenization. The in vitro drug release of PAC-CUR-SLNs was checked followed by their in vitro cytotoxic investigation using adenocarcinomic human alveolar basal epithelial cells (A549) cell lines. Anticancer effects along with side effects of the synergistic delivery of PAC-CUR-SLNs were studied in vivo, using BALB/c mice. PAC-CUR-SLNs were nano sized (190 nm), homogeneously disseminated particles with %IE of both PAC and CUR above 94 %. PAC-CUR-SLNs released PAC and CUR in a controlled fashion when compared with free drug suspensions. The cytotoxicity of PAC-CUR-SLNs was higher than individual drug-loaded SLNs and pure drugs. Moreover, the co-delivery displayed synergistic effect, indicating potential of PAC-CUR-SLNs in lung cancer treatment. In vivo tumor investigation of PAC-CUR-SLNs exhibited 12-fold reduced tumor volume and almost no change in body weight of BALB/c mice, when compared with the experimental groups including control group. The inhibition of tumor rate on day 28 was 82.7 % in the PAC-CUR-SLNs group, which was significantly higher than the pure drugs and monotherapies. It can be concluded that, encapsulating the co-loaded antitumor drugs like PAC-CUR in SLNs may help in improved targeting of the tumor with enhanced anticancer effect.

Keywords: Combination therapy; Curcumin; Drug delivery; Lung cancer; Nanotechnology; Paclitaxel; Solid lipid nanoparticles.