SARS-CoV-2 variant introduction following spring break travel and transmission mitigation strategies

PLoS One. 2024 May 9;19(5):e0301225. doi: 10.1371/journal.pone.0301225. eCollection 2024.

Abstract

Background: University spring break carries a two-pronged SARS-CoV-2 variant transmission risk. Circulating variants from universities can spread to spring break destinations, and variants from spring break destinations can spread to universities and surrounding communities. Therefore, it is critical to implement SARS-CoV-2 variant surveillance and testing strategies to limit community spread before and after spring break to mitigate virus transmission and facilitate universities safely returning to in-person teaching.

Methods: We examined the SARS-CoV-2 positivity rate and changes in variant lineages before and after the university spring break for two consecutive years. 155 samples were sequenced across four time periods: pre- and post-spring break 2021 and pre- and post-spring break 2022; following whole genome sequencing, samples were assigned clades. The clades were then paired with positivity and testing data from over 50,000 samples.

Results: In 2021, the number of variants in the observed population increased from four to nine over spring break, with variants of concern being responsible for most of the cases; Alpha percent composition increased from 22.2% to 56.4%. In 2022, the number of clades in the population increased only from two to three, all of which were Omicron or a sub-lineage of Omicron. However, phylogenetic analysis showed the emergence of distantly related sub-lineages. 2022 saw a greater increase in positivity than 2021, which coincided with a milder mitigation strategy. Analysis of social media data provided insight into student travel destinations and how those travel events may have impacted spread.

Conclusions: We show the role that repetitive testing can play in transmission mitigation, reducing community spread, and maintaining in-person education. We identified that distantly related lineages were brought to the area after spring break travel regardless of the presence of a dominant variant of concern.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / epidemiology
  • COVID-19* / prevention & control
  • COVID-19* / transmission
  • COVID-19* / virology
  • Humans
  • Phylogeny
  • SARS-CoV-2* / genetics
  • SARS-CoV-2* / isolation & purification
  • Seasons
  • Travel*
  • Universities
  • Whole Genome Sequencing

Supplementary concepts

  • SARS-CoV-2 variants

Grants and funding

This research received funding from multiple sources. SW, REN, CLP received support from Clemson University's College of Science. DD, CAP received support from Clemson University's Vice President for Research, Clemson University's Creative Inquiry, and the South Carolina Governor & Joint Bond Review Committee. SW, REN, CLP, LR, CAP, DD received funding through the National Institute of General Medical Sciences of the National Institutes of Health (https://www.nigms.nih.gov/; grant number: P20GM121342). SW, REN, CLP also received funding from the National Institute of General Medical Sciences of the NIH (under grant number P20GM109094). Additionally, CAP received support from NIGMS under grant P20GM139769. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.