Effect of boron fertilization on productivity and sustainability of rice-wheat cropping system in Tarai region, North-West India

J Environ Manage. 2024 May:359:121084. doi: 10.1016/j.jenvman.2024.121084. Epub 2024 May 9.

Abstract

Extensive global dependency on rice and wheat crops has necessitated the adoption of intensive cultivation practices, thereby compelling to closely monitor the potential yield-limiting factors, among which, boron (B) deficiency stands out to be a prime concern. The present study explores the effects of B fertilization strategies within the Rice-Wheat Cropping System (RWCS) in the Tarai region of North-West India. A comprehensive six-year field experiment was conducted (2013-2019) at G.B. Pant University of Agriculture and Technology, Uttarakhand, India. The experiment tested graded B doses (0.5, 1.0, 1.5, and 2.0 kg ha-1) at varied frequencies (single, alternate, and annual) in a factorial design. The study revealed significant impacts of alternate B application at 1.5 kg ha-1 on crop yields and the Sustainable Yield Index (SYI). The System Rice Equivalent Yield (SREY) exhibited an increase of 6.7% with B supplementation over B-deprived plots, highlighting the pivotal role of B fertilizer in enhancing productivity within the RWCS. The economic optimum B dose was found to be 1.422 kg ha-1 using a linear plus plateau model, resulting in a calculated annual SREY of 9.73 t ha-1 when applied alternately to the cropping system. Continuous application and higher B rates demonstrated substantial increases in various B fractions, while the mobility factor remained within 10%, depicting safe ecological limits. The distribution of fractions in B-treated plots on average followed the order: residual B > organically-bound B > oxide bound B > specifically adsorbed B > readily soluble B. Similarities in the distribution patterns of B fractions between B-treated plots and the control indicated potential influence of biotic or abiotic processes on B fraction dynamics, even in the absence of external B application. To sum up, B application in alternate years at 1.5 kg ha-1 was most sustainable in enhancing the SREY, SYI, available soil B, and B fractions and lowering the environmental hazards.

Keywords: Boron fractions; Mobility factor; Sustainable yield index; System rice equivalent yield.

MeSH terms

  • Agriculture* / methods
  • Boron*
  • Crops, Agricultural* / growth & development
  • Fertilizers*
  • India
  • Oryza* / growth & development
  • Soil / chemistry
  • Triticum* / growth & development