Ambient fine particulate matter and daily mortality: a comparative analysis of observed and estimated exposure in 347 cities

Int J Epidemiol. 2024 Apr 11;53(3):dyae066. doi: 10.1093/ije/dyae066.

Abstract

Background: Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 µm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures.

Methods: We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach.

Results: We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-μg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively.

Conclusions: Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.

Keywords: Short-term exposure; air monitoring station observation; fine particulate matter; model estimation; mortality risk comparison.

Publication types

  • Research Support, Non-U.S. Gov't
  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Air Pollutants* / adverse effects
  • Air Pollutants* / analysis
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Cardiovascular Diseases* / mortality
  • Cities* / epidemiology
  • Environmental Exposure* / adverse effects
  • Environmental Monitoring / methods
  • Female
  • Humans
  • Machine Learning
  • Male
  • Middle Aged
  • Mortality / trends
  • Particulate Matter* / adverse effects
  • Particulate Matter* / analysis
  • Respiratory Tract Diseases / mortality

Substances

  • Particulate Matter
  • Air Pollutants