The role of ponds in pesticide dissipation at the catchment scale: The case of the Save agricultural catchment (Southwestern France)

Sci Total Environ. 2024 May 9:934:173131. doi: 10.1016/j.scitotenv.2024.173131. Online ahead of print.

Abstract

Pesticides are a major source of pollution for ecosystems. In agricultural catchments, ponds serve as buffer areas for pesticide transfers and biogeochemical hotspots for pesticide dissipation. Some studies have highlighted the specific impact of ponds on the dynamics of pesticides, but knowledge of their cumulative effect at the watershed scale is scarce. Hence, using a modelling approach, we assessed the cumulative role of ponds in pesticide transfer in an agricultural basin (Southwest of France, 1110 km2). The Soil and Water Assessment Tool (SWAT) model was used to model the Save basin, including 197 ponds selected with a Multi-Criteria Decision Aiding Model based on their pesticide interception capacities. The daily discharge, the suspended sediment loads and two herbicide loads (i.e. S-metolachlor and aclonifen) in dissolved and particulate phases were accurately simulated from January 2002 to July 2014 at a daily time step. The presence of ponds resulted in a yearly mean reduction at the watershed outlet of respectively 61 % and 42 % of aclonifen and S-metolachlor fluxes compared to the simulations in the absence of ponds. Sediment-related processes were the most efficient for pesticide dissipation, leading to a mean dissipation efficiency by ponds of 51.0 % for aclonifen and 34.4 % for S-metolachlor. This study provides a first quantification of the cumulative role of ponds in pesticide transfer at the catchment scale in an intensive agricultural catchment.

Keywords: Aclonifen; Dissipation efficiency; Multi-criteria decision aiding; S-metolachlor; SWAT model.