Self-assembly of Ni(II) with a chiral ligand pair vs. mixture of the chiral ligand pair: structural features and recognition ability of Ni2L4 cages

Dalton Trans. 2024 May 13. doi: 10.1039/d4dt00762j. Online ahead of print.

Abstract

The self-assembly of NiCl2 with a chiral bidentate ligand pair, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl nicotinate (r,s-L and s,r-L) in a mixture of ethanol and dioxane, gives rise to stable crystals consisting of [2Cl@Ni2Cl2(s,r-L)4(H2O)2]·4C4H8O2·EtOH and [2Cl@Ni2Cl2(r,s-L)4(H2O)2]·4C4H8O2·EtOH chiral cages, respectively, with two encapsulated chloride anions in the cavities. The most interesting feature is that the self-assembly of NiCl2 with the mixture of r,s-L and s,r-L (1 : 1-1 : 4) produces crystals of thermodynamically stable achiral cages, [2Cl·2H2O@Ni2Cl2(s,r-L)2(r,s-L)2(H2O)2]·7C4H8O2, in the molar ratio range. Furthermore, the [2Cl@Ni2Cl2(s,r-L)4(H2O)2]·4C4H8O2·EtOH and [2Cl@Ni2Cl2(r,s-L)4(H2O)2]·4C4H8O2·EtOH chiral crystals can recognize the pairs of L-,D-tryptophan and L-,D-cysteine via cyclic voltammetry (CV) signals, in contrast to the [2Cl·2H2O@Ni2Cl2(s,r-L)2(r,s-L)2(H2O)2]·7C4H8O2 achiral crystal.