Deciphering the storage mechanism of biochar anchored with different morphology Mn3O4 as advanced anode material for lithium-ion batteries

J Colloid Interface Sci. 2024 Sep:669:740-753. doi: 10.1016/j.jcis.2024.05.044. Epub 2024 May 9.

Abstract

Biochar is regarded as a promising lithium-ion batteries anode material, owing to its high cost-effectiveness. However, the poor specific capacity and cycling stability have limited its practical applications. A straightforward and cost-efficient solvothermal method is presented for synthesizing Mn3O4/biochar composites in this study. By adjusting solvothermal temperatures, Mn3O4 with different morphology is prepared and anchored on the biochar surface (MKAC-T) to improve the electrochemical performance. Due to the morphological effect of nanospherical Mn3O4 on the biochar surface, the MKAC-180 anode material demonstrates outstanding reversible capacity (992.5 mAh/g at 0.2 A/g), significant initial coulombic efficiency (61.1 %), stable cycling life (605.3 mAh/g at 1.0 A/g after 1000 cycles), and excellent rate performance (385.8 mAh/g at 1.6 A/g). Moreover, electro-kinetic analysis and ex-situ physicochemical characterizations are employed to illustrate the charge storage mechanisms of MKAC-180 anode. This study provides valuable insights into the "structure-activity relationship" between Mn3O4 microstructure and electrochemical performance for the Mn3O4/biochar composites, illuminating the industrial utilization of biomass carbon anode materials.

Keywords: Anode material; Biochar; Lithium-ion batteries; Nanospherical Mn(3)O(4); Solvothermal method.