Clinical value of deep learning image reconstruction on the diagnosis of pulmonary nodule for ultra-low-dose chest CT imaging

Clin Radiol. 2024 Apr 20:S0009-9260(24)00199-5. doi: 10.1016/j.crad.2024.04.008. Online ahead of print.

Abstract

Purpose: To compare the image quality and pulmonary nodule detectability between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in ultra-low-dose CT (ULD-CT).

Methods: 142 participants required lung examination who underwent simultaneously ULD-CT (UL-A, 0.57 ± 0.04 mSv or UL-B, 0.33 ± 0.03 mSv), and standard CT (SDCT, 4.32 ± 0.33 mSv) plain scans were included in this prospective study. SDCT was the reference standard using ASIR-V at 50% strength (50%ASIR-V). ULD-CT was reconstructed with 50%ASIR-V, DLIR at medium and high strength (DLIR-M, DLIR-H). The noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and subjective scores were measured. The presence and accuracy of nodules were analyzed using a combination of a deep learning-based nodule evaluation system and a radiologist.

Results: A total of 710 nodules were detected by SDCT, including 358 nodules in UL-A and 352 nodules in UL-B. DLIR-H exhibited superior noise, SNR, and CNR performance, and achieved comparable or even higher subjective scores compared to 50%ASIR-V in ULD-CT. Nodules sensitivity detection of 50%ASIR-V, DLIR-M, and DLIR-H in ULD-CT were identical (96.90%). In multivariate analysis, body mass index (BMI), nodule diameter, and type were independent predictors for the sensitivity of nodule detection (p<.001). DLIR-H provided a lower absolute percent error (APE) in volume (3.10% ± 95.11% vs 8.29% ± 99.14%) compared to 50%ASIR-V of ULD-CT (P<.001).

Conclusions: ULD-CT scanning has a high sensitivity for detecting pulmonary nodules. Compared with ASIR-V, DLIR can significantly reduce image noise, and improve image quality, and accuracy of the nodule measurement in ULD-CT.