Dimensional Reduction of Metal-Organic Frameworks for Photocatalytic Synthesis of Fused Tetracyclic Heterocycles

Inorg Chem. 2024 May 27;63(21):9854-9863. doi: 10.1021/acs.inorgchem.4c00545. Epub 2024 May 16.

Abstract

Heterogeneous palladium catalysts with high efficiency, high Pd atom utilization, simplified separation, and recycle have attracted considerable attention in the field of synthetic chemistry. Herein, we reported a zirconium-based two-dimensional metal-organic framework (2D-MOF)-based Pd(II) photocatalyst (Zr-Ir-Pd) by merging the Ir photosensitizers and Pd(II) species into the skeletons of the 2D-MOF for the Pd(II)-catalyzed oxidation reaction. Morphological and structural characterization identified that Zr-Ir-Pd with a specific nanoflower-like structure consists of ultrathin 2D-MOF nanosheets (3.85 nm). Due to its excellent visible-light response and absorption capability, faster transfer and separation of photogenerated carriers, more accessible Pd active sites, and low mass transfer resistance, Zr-Ir-Pd exhibited boosted photocatalytic activity in catalyzing sterically hindered isocyanide insertion of diarylalkynes for the construction of fused tetracyclic heterocycles, with up to 12 times the Pd catalyst turnover number than the existing catalytic systems. In addition, Zr-Ir-Pd inhibited the competitive agglomeration of Pd(0) species and could be reused at least five times, owing to the stabilization of 2D-MOF on the single-site Pd and Ir sites. Finally, a possible mechanism of the photocatalytic synthesis of fused tetracyclic heterocycles catalyzed by Zr-Ir-Pd was proposed.