X-ray crystal structure of galabiose, O-alpha-D-galactopyranosyl-(1---4)-D-galactopyranose

Carbohydr Res. 1986 Jan 15;146(1):29-38. doi: 10.1016/0008-6215(86)85021-2.

Abstract

O-alpha-D-Galactopyranosyl-(1---4)-D-galactopyranose, C12H22O11, Mr = 342.30, crystallises in the orthorhombic space group P2(1)2(1)2(1), and has alpha = 5.826(1), b = 13.904(3), c = 17.772(4) A, Z = 4, and Dx = 1.579 g.cm-3. Intensity data were collected with a CAD4 diffractometer. The structure was solved by direct methods and refined to R = 0.063 and Rw = 0.084 for 2758 independent reflections. The glycosidic linkage is of the type 1-axial-4-axial with torsion angles phi O-5' (O-5'-C-1'-O-1'-C-4) = 98.1(2) degrees, psi C-3 (C-3-C-4-O-1'-C-1') = -81.9(3) degrees, phi H (H-1'-C-1'-O-1'-C-4) = -18 degrees, and psi H (H-4-C-4-O-1'-C-1') = 35 degrees. The conformation is stabilised by an O-3 . . . O-5' intramolecular hydrogen-bond with length 2.787(3) A and O-3-H . . . O-5' = 162 degrees. The glycosidic linkage causes a folding of the molecule with an angle of 117 degrees between the least-square planes through the pyranosidic rings. The crystal investigated contained 56(1)% of alpha- and 44(1)% of beta-galabiose as well as approximately 70% of the gauche-trans and approximately 30% of the trans-gauche conformers about the exocyclic C-5'-C-6' and C-5-C-6 bonds. The crystal packing is governed by hydrogen bonding that engages all oxygen atoms except the intramolecular acceptor O-5' and the glycosidic O-1' oxygen atoms.

MeSH terms

  • Carbohydrate Conformation
  • Disaccharides*
  • Hydrogen Bonding
  • Models, Molecular
  • X-Ray Diffraction

Substances

  • Disaccharides
  • 4-O-alpha-D-galactopyranosyl-D-galactose