Airway closure in humans does not result in overestimation of plethysmographic lung volume

J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1784-9. doi: 10.1152/jappl.1983.55.6.1784.

Abstract

Exercise Physiol. 52: 638-641, 1982) have shown in dogs that airway closure may induce rib cage deformation and nonhomogeneous alveolar pressure swings, and they have suggested that this could lead to thoracic gas volume (TGV) overestimation by body plethysmography. However, in humans the rib cage is less easy to distort than in dogs. In four healthy volunteers we measured TGV by plethysmography before (B) and during (D) the occlusion of the middle and lower right lobes by a balloon (attached to a double-lumen catheter) positioned in the intermediate right bronchus. Subjects were trained to perform panting maneuvers preferentially with intercostals and accessory muscles or the diaphragm. Five to eleven TGV measurements were made in each subject with each panting pattern B and D occlusion. Balloon inflation resulted in no change in TGV whether low [13.3 +/- 3.4 (SD) cmH2O] or high (46.8 +/- 8.4 cmH2O) transdiaphragmatic pressures (Pdi) were used: TGV 4.0 +/- 0.4 (B) vs. 4.0 +/- 0.4 liters (D) and 4.3 +/- 0.4 (B) vs. 4.3 +/- 0.4 liters (D) for low and high Pdi, respectively. Thus, in trained subjects performing maneuvers aimed to distort the rib cage, no pressure difference was observed between the occluded and the nonoccluded lung during panting against the closed shutter. We conclude that it is unlikely that the mechanism proposed by Brown et al. might explain errors in lung volume measurements by body plethysmography in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Evaluation Studies as Topic
  • Gases
  • Humans
  • Lung Volume Measurements / methods*
  • Male
  • Plethysmography, Whole Body*
  • Pulmonary Ventilation*
  • Thorax / physiology

Substances

  • Gases