Cloning and characterization of the genes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105

Appl Environ Microbiol. 1995 Dec;61(12):4284-90. doi: 10.1128/aem.61.12.4284-4290.1995.

Abstract

Pseudomonas pickettii YH105 was isolated for its ability to utilize p-nitrobenzoate as the sole source of carbon, nitrogen, and energy. Degradation of p-nitrobenzoate by this strain proceeds through a reductive route as evidenced by the accumulation of ammonia in the culture medium during growth on p-nitrobenzoate. Enzyme assays and high-performance liquid chromatography (HPLC) analysis of culture supernatants indicate that p-nitrobenzoate is degraded through p-hydroxylaminobenzoate and protocatechuate. In order to clone the genes responsible for the initial steps in the catabolic pathway, a cosmid library was constructed with P. pickettii YH105 genomic DNA. The library was screened for clones capable of transforming p-nitrobenzoate to protocatechuate, using a plate assay specific for diphenolic compounds. HPLC analysis of culture supernatants confirmed that the cosmid clones did indeed produce protocatechuate from p-nitrobenzoate. Five positive cosmid clones that possessed this activity were identified. Restriction digests of the cosmid clones indicated that all of the clones had two EcoRI fragments in common (3.9 and 1.0 kb). One of these cosmid clones, designated pGJZ1601, was chosen for further analysis. Subcloning and activity assay experiments localized the genes responsible for the conversion of p-nitrobenzoate to protocatechuate to a 1.4-kb SalI-SphI DNA fragment. Further subcloning experiments localized the gene coding for p-nitrobenzoate reductase, responsible for the first enzymatic step in the catabolic pathway, to a 0.8-kb SalI-ApaI DNA fragment. The gene for the second step in the catabolic pathway, coding for hydroxylaminolyase, was located adjacent to the gene for the p-nitrobenzoate reductase.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biodegradation, Environmental
  • Cloning, Molecular
  • Cosmids / genetics
  • Genes, Bacterial*
  • Nitrobenzoates / metabolism*
  • Pseudomonas / genetics*
  • Pseudomonas / metabolism
  • Restriction Mapping

Substances

  • Nitrobenzoates