Nitric oxide and exercise in the horse

J Physiol. 1996 Sep 15;495 ( Pt 3)(Pt 3):863-74. doi: 10.1113/jphysiol.1996.sp021638.

Abstract

1. The effects of exercise on the production rate of nitric oxide (NO) in exhaled air (VNO) and the effects of inhaled NO (80 p.p.m.) on cardiovascular and respiratory parameters were investigated in five Throughbred horses. 2. The concentration of NO ([NO]) in exhaled air collected from within the nasal opening was lower when collected at a high flow rate of 80 l min-1 than at a low flow rate of 20 l min-1: when trotting at 3.7 m s-1 the values were 0.78 +/- 0.15 and 1.23 +/- 9.14 p.p.b., respectively, and when cantering at 9 m s-1 the values were 1.69 +/- 0.31 and 2.25 +/- 0.32 p.p.b., respectively. 3. Nebulized methoxamine (40 mg ml-1 for 60 s), an alpha 1-adrenergic agonist, further reduced [NO] during the 9 m s-1 canter to 1.05 +/- 0.14 and 1.99 +/- 0.41 p.p.b. when collected at 80 and 20 l min-1, respectively, and induced cyclical changes in the breathing pattern. 4. Exercise induced a linear increase in VNO with work intensity to a maximum (428.1 +/- 31.6 pmol min-1 kg-1) which coincided with the maximal oxygen uptake for the horses (138.3 +/- 11.7 ml min-1 kg-1), although a further increase in VNO (779.3 +/- 38.4 pmol min-1 kg-1) occurred immediately after exercise. The changes in VNO correlated well with the tidal volume (r = 0.968; P < 0.01) and the haematocrit (r = 0.855; P < 0.01). 5. In the first 2 min of high intensity exercise, inhaled NO (80 p.p.m.) significantly (P < 0.05) reduced the pulmonary artery pressure: during the first minute, pulmonary artery pressure was 83.1 +/- 7.6 mmHg compared with a control value of 94.4 +/- 6.3 mmHg, and during the second minute, 84.2 +/- 7.1 mmHg compared with a control value of 98.4 +/- 4.7 mmHg. There were no other significant changes in cardiovascular or respiratory indices, including cardiac output, measured during exercise between control and inhaled NO tests. 6. The results show that exhaled NO is released from the airways of the horse and may contribute to the regulation of pulmonary vascular tone during exercise.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic alpha-Agonists / pharmacology
  • Animals
  • Blood Pressure / drug effects
  • Blood Pressure / physiology
  • Cardiovascular Physiological Phenomena
  • Female
  • Horses / physiology*
  • Humans
  • Male
  • Methoxamine / pharmacology
  • Nitric Oxide / administration & dosage
  • Nitric Oxide / biosynthesis
  • Nitric Oxide / physiology*
  • Physical Exertion / physiology*
  • Pulmonary Artery / drug effects
  • Pulmonary Artery / physiology
  • Pulmonary Circulation / drug effects
  • Pulmonary Circulation / physiology
  • Respiration / drug effects
  • Respiration / physiology*
  • Species Specificity

Substances

  • Adrenergic alpha-Agonists
  • Nitric Oxide
  • Methoxamine