Testosterone treatment in adolescents with delayed puberty: changes in body composition, protein, fat, and glucose metabolism

J Clin Endocrinol Metab. 1997 Oct;82(10):3213-20. doi: 10.1210/jcem.82.10.4293.

Abstract

Previously, we demonstrated decreased protein breakdown and insulin resistance in pubertal adolescents compared with prepubertal children. Puberty-related increases in sex steroids and/or GH could be potentially responsible. In the present study, the effects of 4 months of testosterone enanthate (50 mg in every 2 weeks) on body composition, protein, fat, and glucose metabolism and insulin sensitivity were evaluated in adolescents with delayed puberty. Body composition was assessed by H218O-dilution principle. Protein breakdown, oxidation, and synthesis were measured during primed constant infusion of [1-13C]leucine. Whole-body lipolysis was measured during primed constant infusion of [2H5]glycerol. Insulin action in suppressing proteolysis and lipolysis and stimulating glucose disposal was assessed during a stepwise hyperinsulinemic (10 and 40 mU-m2.min) euglycemic clamp. Fat and glucose oxidation rates were calculated from indirect calorimetry measurements. After 4 months of testosterone treatment, height, weight, and fat free mass (FFM) increased and fat mass, percent body fat, plasma cholesterol, high- and low-density lipoproteins, and leptin levels decreased significantly. Whole-body proteolysis and protein oxidation were lower after testosterone treatment (proteolysis, 0.49 +/- 0.03 vs 0.54 +/- 0.04 g.h.kg FFM, P = 0.032; oxidation, 0.05 +/- 0.01 vs. 0.09 +/- 0.01 g.h.kg FFM, P = 0.015). Protein synthesis was not different, and resting energy expenditure was not different. Total body lipolysis was not affected by testosterone treatment, however, fat oxidation was higher after testosterone (pre-: 2.4 +/- 0.7 vs. post-: 3.5 +/- 0.7 mumol.kg.min, P = 0.031). During the 40 mU.m2.min hyperinsulinemia, insulin sensitivity of glucose metabolism was not affected with testosterone therapy (59.1 +/- 8.8 vs. 57.1 +/- 8.2 mumol.kg.min per muU/mL). However, metabolic clearance rate of insulin was higher posttestosterone (13.6 +/- 1.1 vs. 16.7 +/- 0.8 mL.kg.min, P = 0.004). In conclusion, after 4 months of low-dose testosterone treatment in adolescents with delayed puberty 1) FFM increases and fat mass and leptin levels decrease; 2) postabsorptive proteolysis and protein oxidation decrease; 3) fat oxidation increases; and 4) insulin sensitivity in glucose metabolism does not change, whereas insulin clearance increases. These longitudinal observations are in agreement with our previous cross-sectional studies of puberty and demonstrate sparing of protein breakdown of approximately 1.2 g.kg.day FFM, wasting of fat mass, but no change in insulin sensitivity after short periods of low-dose testosterone supplementation.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Body Composition / drug effects*
  • Fats / metabolism
  • Glucose / metabolism
  • Humans
  • Hyperinsulinism / metabolism
  • Longitudinal Studies
  • Male
  • Oxidation-Reduction / drug effects
  • Proteins / metabolism
  • Puberty, Delayed / drug therapy*
  • Puberty, Delayed / metabolism*
  • Puberty, Delayed / pathology
  • Testosterone / therapeutic use*

Substances

  • Fats
  • Proteins
  • Testosterone
  • Glucose