Leukemia inhibitory factor: part of a large ingathering family

Int Rev Immunol. 1998;16(3-4):397-426. doi: 10.3109/08830189809043003.

Abstract

Leukemia Inhibitory Factor (LIF) has a wide variety of biological activities. It regulates the differentiation of embryonic stem cells, neural cells, osteoblasts, adipocytes, hepatocytes and kidney epithelial cells. It also triggers the proliferation of myoblasts, primordial germ cells and some endothelial cells. Many of these biological functions parallel those of interleukin-6, Oncostatin M, ciliary neurotrophic factor, interleukin-11 and cardiotrophin-1. These structurally related cytokines also share subunits of their receptors which could partially explain the redundancy in this system of soluble mediators. In vivo LIF proves important in regulating the inflammatory response by fine tuning of the delicate balance of at least four systems in the body, namely the immune, the hematopoietic, the nervous and the endocrine systems. Although we are far from its therapeutic applications, the fast increasing knowledge in this field may bring new insights for the understanding of the cytokine biology in general.

Publication types

  • Review

MeSH terms

  • Animals
  • Growth Inhibitors / physiology*
  • Humans
  • Interleukin-6*
  • Leukemia Inhibitory Factor
  • Leukemia Inhibitory Factor Receptor alpha Subunit
  • Lymphokines / physiology*
  • Mice
  • Molecular Structure
  • Receptors, Cytokine / physiology
  • Receptors, OSM-LIF

Substances

  • Growth Inhibitors
  • Interleukin-6
  • LIF protein, human
  • LIFR protein, human
  • Leukemia Inhibitory Factor
  • Leukemia Inhibitory Factor Receptor alpha Subunit
  • Lif protein, mouse
  • Lifr protein, mouse
  • Lymphokines
  • Receptors, Cytokine
  • Receptors, OSM-LIF