Unequal cleavage in the early Tubifex embryo

Dev Growth Differ. 1998 Jun;40(3):257-66. doi: 10.1046/j.1440-169x.1998.00001.x.

Abstract

Unequal cleavage that produces two blastomeres of different size is a cleavage pattern that many animals in a variety of phyla, particularly in Spiralia, adopt during early development. This cleavage pattern is apparently instrumental for asymmetric segregation of developmental potential, but it is also indispensable for normal embryogenesis in many animals. Mechanically, unequal cleavage is achieved by either simple unequal cytokinesis or by forming a polar lobe at the egg's vegetal pole. In the present paper, the mechanisms for unequal cytokinesis involved in the first three cleavages in the oligochaete annelid Tubifex are reviewed. The three unequal cleavages are all brought about by an asymmetrically organized mitotic apparatus (MA). The MA of the first cleavage is monastral in that an aster is present at one pole of a bipolar spindle but not at the other. This monastra form, which arises as a result of the involvement of a single centrosome in the MA assembly, is both necessary and sufficient for unequal first cleavage. The egg cortex during the first mitosis is devoid of the ability to remodel spindle poles. In contrast to the non-cortical mechanisms for the first cleavage, asymmetry in the MA organization at the second and third cleavages depends solely on specialized properties of the cell cortex, to which one spindle pole is physically connected. A cortical attachment site for the second cleavage spindle is generated de novo at the cleavage membrane resulting from the first cleavage; it is an actin-based, cell contact-dependent structure. The cortical microtubule attachment site for the third cleavage, which functions independently of contact with other cells, is not generated at the cleavage membrane resulting from the second cleavage, but is located at the animal pole; it may originate from the second polar body formation and become functional at the 4-cell stage.

Publication types

  • Review

MeSH terms

  • Animals
  • Cleavage Stage, Ovum / cytology
  • Cleavage Stage, Ovum / physiology*
  • Embryo, Nonmammalian / cytology
  • Embryonic Development
  • Oligochaeta / cytology*
  • Oligochaeta / embryology*