Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms

EMBO J. 1999 Feb 1;18(3):632-43. doi: 10.1093/emboj/18.3.632.

Abstract

A hydrophobic cleft formed by the BH1, BH2 and BH3 domains of Bcl-xL is responsible for interactions between Bcl-xL and BH3-containing death agonists. Mutants were constructed which did not bind to Bax but retained anti-apoptotic activity. Since Bcl-xL can form an ion channel in synthetic lipid membranes, the possibility that this property has a role in heterodimerization-independent cell survival was tested by replacing amino acids within the predicted channel-forming domain with the corresponding amino acids from Bax. The resulting chimera showed a reduced ability to adopt an open conductance state over a wide range of membrane potentials. Although this construct retained the ability to heterodimerize with Bax and to inhibit apoptosis, when a mutation was introduced that rendered the chimera incapable of heterodimerization, the resulting protein failed to prevent both apoptosis in mammalian cells and Bax-mediated growth defect in yeast. Similar to mammalian cells undergoing apoptosis, yeast cells expressing Bax exhibited changes in mitochondrial properties that were inhibited by Bcl-xL through heterodimerization-dependent and -independent mechanisms. These data suggest that Bcl-xL regulates cell survival by at least two distinct mechanisms; one is associated with heterodimerization and the other with the ability to form a sustained ion channel.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Apoptosis / physiology*
  • Cell Line
  • Cell Survival / physiology
  • Dimerization
  • Humans
  • Ion Channels / chemistry
  • Ion Channels / physiology
  • Mice
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Conformation
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / physiology
  • Proto-Oncogene Proteins c-bcl-2 / chemistry*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / physiology*
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Transfection
  • bcl-2-Associated X Protein
  • bcl-X Protein

Substances

  • BAX protein, human
  • BCL2L1 protein, human
  • Bax protein, mouse
  • Bcl2l1 protein, mouse
  • Ion Channels
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • bcl-X Protein